Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Urologiia ; (1): 162-167, 2024 Mar.
Artículo en Ruso | MEDLINE | ID: mdl-38650422

RESUMEN

Currently, the significance of the chronic prostatitis (CP) is undoubted. Oxidative stress is considered as one of the standard mechanisms of cellular damage that is associated with inflammatory diseases such as CP. When choosing the combination therapy for this group of patients, a correction of oxidative stress is pathogenetically justified. Literature data about the pathogenetic feasibility and prospects of using a biologically active complex containing flavonoids and carotenoids quercetin, lycopene and naringin as part of the combination treatment of patients with CP are presented in the article. Considering the various effects of the biologically active complex Querceprost, containing quercetin, lycopene and naringin, among which antioxidant, anti-inflammatory, antimicrobial and immunomodulatory are of greatest importance, as well as taking into account the synergistic effect of flavonoids and carotenoids, we suggest that Querceprost is promising component of combination treatment of patients with CP.


Asunto(s)
Antioxidantes , Prostatitis , Masculino , Humanos , Prostatitis/tratamiento farmacológico , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Enfermedad Crónica , Quimioterapia Combinada , Quercetina/administración & dosificación , Quercetina/farmacología , Quercetina/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Carotenoides/administración & dosificación , Carotenoides/uso terapéutico , Licopeno/administración & dosificación , Licopeno/farmacología , Licopeno/uso terapéutico , Flavanonas/administración & dosificación , Flavanonas/farmacología , Flavanonas/uso terapéutico
2.
Acta cir. bras ; 38: e380823, 2023. graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1439113

RESUMEN

Purpose: To explore the protection of naringenin against oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cell injury, a cell model of cerebral ischemia/reperfusion (I/R) injury in vitro, focusing on SIRT1/FOXO1 signaling pathway. Methods: Cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, 4-hydroxynonenoic acid (4-HNE) level, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured by commercial kits. Inflammatory cytokines levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expressions were monitored by Western blot analysis. Results: Naringenin significantly ameliorated OGD/Rinduced cytotoxicity and apoptosis in HT22 cells. Meanwhile, naringenin promoted SIRT1 and FOXO1 protein expressions in OGD/R-subjected HT22 cells. In addition, naringenin attenuated OGD/R-induced cytotoxicity, apoptosis, oxidative stress (the increased ROS, MDA and 4-HNE levels, and the decreased SOD, GSH-Px and CAT activities) and inflammatory response (the increased tumor necrosis factor-α, interleukin [IL]-1ß, and IL-6 levels and the decreased IL-10 level), which were blocked by the inhibition of the SIRT1/FOXO1 signaling pathway induced by SIRT1-siRNA transfection. Conclusion: Naringenin protected HT22 cells against OGD/R injury depending on its antioxidant and anti-inflammatory activities via promoting the SIRT1/FOXO1 signaling pathway.


Asunto(s)
Daño por Reperfusión , Transducción de Señal , Estrés Oxidativo , Mediadores de Inflamación , Flavanonas/administración & dosificación
3.
Oxid Med Cell Longev ; 2022: 6179444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251479

RESUMEN

Oxidative stress and apoptosis play important roles in the pathogenesis of various degenerative diseases. Previous studies have shown that naringin can exert therapeutic effects in multiple degenerative diseases by resisting oxidative stress and inhibiting apoptosis. Although naringin is effective in treating degenerative disc disease, the underlying mechanism remains unclear. This study is aimed at investigating the effects of naringin on oxidative stress, apoptosis, and intervertebral disc degeneration (IVDD) induced by cyclic stretch and the underlying mechanisms in vitro and in vivo. Abnormal cyclic stretch was applied to rat annulus fibrosus cells, which were then treated with naringin, to observe the effects of naringin on apoptosis, oxidative stress, mitochondrial function, and the nuclear factor- (NF-) κB signaling pathway. Subsequently, a rat model of IVDD induced by dynamic and static imbalance was established to evaluate the effects of naringin on the degree of degeneration (using imaging and histology), apoptosis, and oxidative stress in the serum and the intervertebral disc. Naringin inhibited the cyclic stretch-induced apoptosis of annulus fibrosus cells, reduced oxidative stress, improved mitochondrial function, enhanced the antioxidant capacity, and suppressed the activation of the NF-κB signaling pathway. Additionally, it reduced the degree of IVDD (evaluated using magnetic resonance imaging) and the level of oxidative stress and inhibited apoptosis and p-P65 expression in the intervertebral discs of rats. Thus, naringin can inhibit cyclic stretch-induced apoptosis and delay IVDD, and the underlying mechanism may be related to the inhibition of oxidative stress and activation of the NF-κB signaling pathway. Naringin may be an effective drug for treating degenerative disc disease.


Asunto(s)
Anillo Fibroso/citología , Anillo Fibroso/metabolismo , Antioxidantes/administración & dosificación , Apoptosis/efectos de los fármacos , Flavanonas/administración & dosificación , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , FN-kappa B/metabolismo , Núcleo Pulposo/citología , Núcleo Pulposo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Anillo Fibroso/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Mitocondrias/metabolismo , Núcleo Pulposo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
4.
Artículo en Inglés | MEDLINE | ID: mdl-35228118

RESUMEN

The pharmacological effects and therapeutic targets of naringin (NG) against osteoporosis (OP) is still unclear. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) based non-targeted metabonomics has been used to explore the differentiated metabolites and potential biological pathways of NG in the pathological process of OP. Using network pharmacology analysis, the key protein targets of NG against OP were also screened. By the metabonomics analysis, a total of 33 differentiated metabolites in serum were discovered, of which 21 were significantly regulated by NG treatment. These metabolites majorly associated with to amino acid metabolism,polyunsaturated fatty acid metabolism, pyruvate metabolism and glycerophospholipidmetabolism. Using the network pharmacology prediction analysis, NG was related to the expression changes of 13 important protein targets. It showed that high-throughput metabonomics strategy integrated with network pharmacology could insight into molecular mechanisms of natural products.


Asunto(s)
Biomarcadores/sangre , Cromatografía Líquida de Alta Presión/métodos , Flavanonas/administración & dosificación , Metabolómica/métodos , Osteoporosis/tratamiento farmacológico , Espectrometría de Masas en Tándem/métodos , Aminoácidos/sangre , Animales , Glicerofosfolípidos/sangre , Humanos , Masculino , Ratones , Osteoporosis/sangre
5.
J Colloid Interface Sci ; 614: 322-336, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35104706

RESUMEN

HYPOTHESIS: Precise modulation of immuno-inflammatory response is crucial to control periodontal diseases and related systemic comorbidities. The present nanosystem with the controlled-release and cell-penetrating manner enhances the inflammation modulation effects of baicalein in human gingival epithelial cells (hGECs) for better oral healthcare. EXPERIMENTS: We constructed a red-emissive mesoporous silica nanoparticle-based nanosystem with cell-penetrating poly(disulfide) (CPD) capping, through a facile in-situ polymerization approach. It was featured with a glutathione-responsive manner and instant cellular internalization capacity for precisely delivering baicalein intracellularly. Laboratory experiments assessed whether and how the nanosystem per se with the delivered baicalein could modulate immuno-inflammatory responses in hGECs. FINDINGS: The in-situ polymerized CPD layer capped the nanoparticles and yet controlled the release of baicalein in a glutathione-responsive manner. The CPD coating could facilitate cellular internalization of the nanosystem via endocytosis and thiol-mediated approaches. Notably, the intracellularly released baicalein effectively downregulated the expression of pro-inflammatory cytokines through inhibiting the NF-κB signaling pathway. The nanosystem per se could modulate immuno-inflammatory responses by passivating the cellular response to interlukin-1ß. This study highlights that the as-synthesized nanosystem may serve as a novel multi-functional vehicle to modulate innate host response via targeting the NF-κB pathway for precision healthcare.


Asunto(s)
Disulfuros , Glutatión , Inmunomodulación , Nanopartículas , Dióxido de Silicio , Disulfuros/química , Sistemas de Liberación de Medicamentos , Flavanonas/administración & dosificación , Glutatión/química , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Enfermedades Periodontales/tratamiento farmacológico , Polimerizacion , Porosidad , Dióxido de Silicio/química
6.
Pharmacol Res Perspect ; 10(1): e00928, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35148019

RESUMEN

The bioavailability of drugs is often related to intestinal metabolism and transport mechanisms. In previous studies, pharmaceutical excipients were recognized as inert substances in clinical safety evaluations. However, a large number of studies have shown that pharmaceutical excipients regulate the metabolism and transport of drugs in the body and improve the bioavailability. The pharmaceutical excipient polyethylene glycol 400 (PEG400) as a good solubilizer and surfactant has the potential to improve the bioavailability of drugs. The combined action of UDP-glucuronosyltransferases (UGTs) and efflux transport proteins is responsible for the intestinal disposition and poor bioavailability of baicalein. Our aim is to study the effect of PEG400 on the absorption of baicalein on the Caco-2 monolayer, and confirm the interaction of PEG400 with UGTs (UGT1A8 and UGT1A9) and efflux transports. We initially found that baicalein in the Caco-2 monolayer would be metabolized into glucuronide conjugates BG and B6G under the action of UGT1A8 and UGT1A9 on the endoplasmic reticulum membrane, and then mainly excreted to different sides by acting of MRP and BCRP. The addition of PEG400 significantly accelerated the metabolism of B in Caco-2 cells and increased the penetration of BG and B6G. Furthermore, PEG400 also significantly decreased the efflux ratio of BG and B6G, which was the evidence of the interaction with the efflux transporters. In the in vitro intestinal microsome regeneration system, low concentration PEG400 decreased the Km value of UGT1A8 and UGT1A9 (key enzymes that mediate the production of BG and B6G); high concentration PEG400 enhanced the Vmax value of UGT1A8 and UGT1A9. In conclusion, our results determined that PEG400 interacted with some UGTs and efflux transporters, which were the main factors affecting the absorption of baicalein.


Asunto(s)
Antioxidantes/farmacocinética , Excipientes/farmacología , Flavanonas/farmacocinética , Polietilenglicoles/farmacología , Antioxidantes/administración & dosificación , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Flavanonas/administración & dosificación , Glucuronosiltransferasa/metabolismo , Humanos , Absorción Intestinal , Proteínas de Transporte de Membrana/metabolismo , Microsomas/metabolismo , UDP Glucuronosiltransferasa 1A9/metabolismo
7.
J Neurophysiol ; 127(2): 397-404, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986062

RESUMEN

Whether pinocembrin (PCN) could be used to alleviate hip fracture-induced pain is investigated in this research. Aged rats with hip fractures were treated with vehicle or 80 mg/kg/day PCN from week 3 to week 4. Then, hind paw mechanical allodynia, unweighting, warmth, and thickness were measured. The microglia and astrocytes activation and proliferation markers in the spinal dorsal horn were detected with real-time PCR and immunofluorescence staining. The relative expression of substance P and its receptor, tachykinin receptor 1 (Tacr1), was detected with enzyme-linked immunosorbent assay (ELISA) and Western blots. The antinociceptive effect of Tacr1 inhibitor LY303870 was also testified. PCN alleviated hip fracture-induced hind paw nociceptive (allodynia and unweighting) and vascular changes (warmth and thickness) in aged rats with diminished microglia and astrocytes activation and proliferation in the spinal dorsal horn. Upregulated substance P and Tacr1 were induced after hip fracture, which could be reversed by PCN treatment. Furthermore, LY303870 treatment partially reversed both spinal nociceptive sensitization and vascular changes after hip fracture. Substance P signaling contributes to the nociceptive and vascular changes observed in the hip fracture, which could be alleviated by PCN.NEW & NOTEWORTHY Substance P signaling contributes to the nociceptive and vascular changes observed in hip fracture, which could be alleviated by PCN.


Asunto(s)
Envejecimiento , Flavanonas/farmacología , Fracturas de Cadera/tratamiento farmacológico , Antagonistas del Receptor de Neuroquinina-1/farmacología , Dolor/tratamiento farmacológico , Sustancia P/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Flavanonas/administración & dosificación , Fracturas de Cadera/complicaciones , Fracturas de Cadera/metabolismo , Indoles/farmacología , Masculino , Antagonistas del Receptor de Neuroquinina-1/administración & dosificación , Dolor Nociceptivo/tratamiento farmacológico , Dolor Nociceptivo/etiología , Dolor Nociceptivo/metabolismo , Dolor/etiología , Dolor/metabolismo , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
8.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34253875

RESUMEN

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Flavanonas/farmacología , Glomérulos Renales/efectos de los fármacos , Podocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Flavanonas/administración & dosificación , Inyecciones Intraperitoneales , Glomérulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Podocitos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Relación Estructura-Actividad
9.
Anticancer Agents Med Chem ; 22(1): 169-180, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34225639

RESUMEN

BACKGROUND: Although Methotrexate (MTX) possesses a wide clinical spectrum of activity, its toxic side effects on normal cells and drug resistance often hamper its successful outcome. Naringenin (NG) is one of the promising bioactive flavonoids that are extensively found in grapes, citrus fruits, and fruit arils of Pithecellobium dulce. OBJECTIVE: Only a few experimental in vivo studies on the efficacy of NG against chemotherapeutic drugs have been carried out. Aiming to fill this gap, the present study was carried out to characterize and identify its possible therapeutic targets and also to explore its protective efficacy against MTX-induced tissue damage. METHODS: Oxidative stress was induced in mice with MTX (20 mg/kg B.wt), and animals were orally administered with 10 mg/kg B.wt NG for 10 consecutive days. On day 11, all animals were sacrificed, and hematological and serum biochemical parameters were analyzed. The anti-oxidant efficacy of NG against MTX was evaluated by quantifying tissue superoxide dismutase (SOD), glutatione peroxidase (GPx), reduced glutathione (GSH) and catalase along with oxidative stress markers [malondialdehyde (MDA) and nitric oxide (NO)]. Further, the histopathological analysis was performed to confirm the protective efficacy of FPD. In silico docking studies were also performed to exploring anti-oxidant enzyme-based targets. RESULTS: Our results showed that concurrent administration of NG counteracted oxidative stress induced by MTX, as evidenced by increased expression of anti-oxidant markers, decreased expression of renal and hepatotoxicity serum marker enzymes (p <0.05). A molecular docking study was performed using Auto dock vina to understand the mechanism of ligand binding (S-NG and R-NG)with anti-oxidant enzymes. The binding affinity of S-NG with catalase, GPx, ALP, and SGPT was -10.1, -7.1, -7.1, and -7.3 kcal/mol, respectively, whereas for R-NG was -10.8, -7.1, -7.6, and -7.4 kcal/mol, respectively. Further, histopathological analysis affirmed the protective efficacy of NG against MTX-induced hepatic and renal toxicities. CONCLUSION: Treatment with NG significantly reduced MTX-induced pancytopenia, renal, and hepatic toxicity.


Asunto(s)
Flavanonas/farmacología , Metotrexato/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Sustancias Protectoras/farmacología , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Flavanonas/administración & dosificación , Masculino , Metotrexato/farmacología , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/administración & dosificación , Relación Estructura-Actividad
10.
J Control Release ; 341: 591-604, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896449

RESUMEN

Pulmonary arterial hypertension (PAH) is an uncommon and deadly cardiopulmonary disease. PAH stems essentially from pulmonary artery (PA) remodeling induced predominantly by over-proliferation of PA smooth muscle cells (PASMCs) and inflammation. However, effective treatments are still missing in the clinic because the available drugs consisting of vasodilators are aimed to attenuate PAH symptoms rather than inhibit the remodeling process. Here, we aimed to specifically co-deliver apoptotic executor gene p53 and anti-inflammatory baicalein to PASMCs to alleviate PAH. The targeted co-delivery system was prepared through a carrier-free approach, which was prepared by loading the conjugate, NLS (nuclear localization signal) peptide-p53 gene, onto the baicalein pure crystals, followed by coating with glucuronic acid (GA) for targeting the glucose transport-1 (GLUT-1). The co-delivery system developed has a 200-nm diameter with a rod shape and a drug-loading capacity of 62% (w/w). The prepared system was shown to target PASMCs in vitro and enabled effective gene transfection, efficient apoptosis, and inflammation suppression. In vivo, via targeting the axis lung-PAs-PASMCs, the co-delivery reversed monocrotaline-induced PAH by reducing pulmonary artery pressure, downregulating the proinflammatory cytokine TNF-α, and inhibiting remodeling of both PAs and right ventricular. The potent efficacy may closely correlate with the activation of the signaling axis Bax/Bcl-2/Cas-3. Overall, our results indicate that the co-delivery system holds a significant potential to target the axis of lung-PAs-PASMCs and treat PAH.


Asunto(s)
Sistemas de Liberación de Medicamentos , Flavanonas , Hipertensión Pulmonar , Miocitos del Músculo Liso , Proteína p53 Supresora de Tumor , Animales , Flavanonas/administración & dosificación , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina , Proteína p53 Supresora de Tumor/administración & dosificación
11.
Drug Deliv ; 29(1): 111-127, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34964414

RESUMEN

Naringenin, a flavonoid, possesses antiangiogenic potential and inhibits corneal neovascularization (CNV); however, its therapeutic use is restricted due to poor solubility and limited bioavailability. In this study, we developed a naringenin microemulsion (NAR-ME) for inhibiting CNV. NAR-ME formulation was composed of triacetin (oil phase), Cremophor RH40 (CRH40), PEG400, and water, its droplet size was 13.22 ± 0.13 nm with a narrow size distribution (0.112 ± 0.0014). The results demonstrated that NAR-ME released higher and permeated more drug than NAR suspension (NAR-Susp) in in vitro drug release and ex vivo corneal permeation study. Human corneal epithelial cells (HCECs) toxicity study showed no toxicity with NAR-ME, which is consistent with the result of ocular irritation study. NAR-ME had high bioavailability 1.45-fold, 2.15-fold, and 1.35-fold higher than NAR-Susp in the cornea, conjunctiva, and aqueous humor, respectively. Moreover, NAR-ME (0.5% NAR) presented efficacy comparable to that of dexamethasone (0.025%) in the inhibition of CNV in mice CNV model induced by alkali burning, resulting from the attenuation of corneal vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP-14) expression. In conclusion, the optimized NAR-ME formulation demonstrated excellent physicochemical properties and good tolerance, enhanced ocular bioavailability and corneal permeability. This formulation is promising, safe, and effective for the treatment of CNV.


Asunto(s)
Neovascularización de la Córnea/patología , Portadores de Fármacos/química , Emulsiones/química , Flavanonas/farmacología , Animales , Línea Celular , Supervivencia Celular , Química Farmacéutica , Córnea/metabolismo , Modelos Animales de Enfermedad , Liberación de Fármacos , Estabilidad de Medicamentos , Flavanonas/administración & dosificación , Flavanonas/efectos adversos , Humanos , Concentración de Iones de Hidrógeno , Masculino , Metaloproteinasa 14 de la Matriz/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Soluciones Oftálmicas , Tamaño de la Partícula , Conejos , Propiedades de Superficie , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos
12.
Acta cir. bras ; 37(1): e370102, 2022. ilus, tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1413333

RESUMEN

Introduction: Myocardial ischemia-reperfusion (I/R) injury is one of the mechanisms contributing to the high mortality rate of acute myocardial infarction. Purpose: This study intended to study the role of naringin in cardiac I/R injury. Methods: AC16 cells (human cardiomyocyte cell line) were subjected to oxygen-glucose deprivation/recovery (OGD/R) treatment and/or naringin pretreatment. Then, the apoptosis was examined by flow cytometry and Western blotting. The concentration of IL-6, IL-8 and TNF-α was measured by enzyme-linked immunosorbent assay (ELISA) kits. How naringin influenced microRNA expression was examined by microarrays and quantitative real-time polymerase chain reaction (qRT-PCR). Dual luciferase reporter assay was employed to evaluate the interaction between miR-126 and GSK-3ß. The GSK-3ß/ß-catenin signaling pathway was examined by Western blotting. Finally, rat myocardial I/R model was created to examine the effects of naringin in vivo. Results: Naringin pretreatment significantly decreased the cytokine release and apoptosis of cardiomyocytes exposed to OGD/R. Bioinformatical analysis revealed that naringin upregulated miR-126 expression considerably. Also, it was found that miR-126 can bind GSK-3ß and downregulate its expression, suggesting that naringin could decrease GSK-3ß activity. Next, we discovered that naringin increased ß-catenin activity in cardiomyocytes treated with OGD/R by inhibiting GSK-3ß expression. Our animal experiments showed that naringin pre-treatment or miR-126 agomir alleviated myocardial I/R. Conclusions: Naringin preconditioning can reduce myocardial I/R injury via regulating miR-126/GSK-3ß/ß-catenin signaling pathway, and this chemical can be used to treat acute myocardial infarction.


Asunto(s)
Animales , Ratas , Daño por Reperfusión/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Flavanonas/administración & dosificación , beta Catenina/análisis
13.
Nutrients ; 13(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960014

RESUMEN

Mounting evidence has shown that single-targeted therapy might be inadequate to achieve satisfactory effects. Thus, drug combinations are gaining attention as they can regulate multiple targets to obtain more beneficial effects. Heat shock protein 90 (HSP90) is a molecular chaperone that assists the protein assembly and folding of client proteins and maintains their stability. Interfering with the interaction between HSP90 and its client proteins by inhibiting the latter's activity may offer a new approach toward combination therapy. The HSP90 client protein AKT plays an important role in the inflammatory response syndrome caused by infections. In this study, the dietary flavone baicalein was identified as a novel inhibitor of HSP90 that targeted the N-terminal ATP binding pocket of HSP90 and hindered the chaperone cycle, resulting in AKT degradation. Combining baicalein with genipin, which was extracted from Gardenia jasminoides, could inhibit the pleckstrin homology domain of AKT, significantly increasing the anti-inflammatory effects both in vitro and in vivo. This synergistic effect was attributed to the reduction in AKT expression and phosphorylation. Thus, elucidating the mechanism underlying this effect will provide a new avenue for the clinical application and development of synergistic anti-inflammatory drugs.


Asunto(s)
Flavanonas/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Iridoides/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Colagogos y Coleréticos/administración & dosificación , Colagogos y Coleréticos/farmacología , Dieta , Sistemas de Liberación de Medicamentos , Quimioterapia Combinada , Flavanonas/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Iridoides/administración & dosificación , Lipopolisacáridos/toxicidad , Masculino , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Pseudomonas aeruginosa , Células RAW 264.7 , Distribución Aleatoria
14.
Molecules ; 26(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34641329

RESUMEN

The antioxidant activity of food compounds is one of the properties generating the most interest, due to its health benefits and correlation with the prevention of chronic disease. This activity is usually measured using in vitro assays, which cannot predict in vivo effects or mechanisms of action. The objective of this study was to evaluate the in vivo protective effects of six phenolic compounds (naringenin, apigenin, rutin, oleuropein, chlorogenic acid, and curcumin) and three carotenoids (lycopene B, ß-carotene, and astaxanthin) naturally present in foods using a zebrafish embryo model. The zebrafish embryo was pretreated with each of the nine antioxidant compounds and then exposed to tert-butyl hydroperoxide (tBOOH), a known inducer of oxidative stress in zebrafish. Significant differences were determined by comparing the concentration-response of the tBOOH induced lethality and dysmorphogenesis against the pretreated embryos with the antioxidant compounds. A protective effect of each compound, except ß-carotene, against oxidative-stress-induced lethality was found. Furthermore, apigenin, rutin, and curcumin also showed protective effects against dysmorphogenesis. On the other hand, ß-carotene exhibited increased lethality and dysmorphogenesis compared to the tBOOH treatment alone.


Asunto(s)
Antioxidantes/administración & dosificación , Factores Biológicos/administración & dosificación , Carotenoides/administración & dosificación , Polifenoles/administración & dosificación , Pez Cebra/embriología , terc-Butilhidroperóxido/efectos adversos , Animales , Antioxidantes/farmacología , Apigenina/administración & dosificación , Apigenina/farmacología , Factores Biológicos/farmacología , Carotenoides/farmacología , Curcumina/administración & dosificación , Curcumina/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Flavanonas/administración & dosificación , Flavanonas/farmacología , Licopeno/administración & dosificación , Licopeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Polifenoles/farmacología , Xantófilas/administración & dosificación , Xantófilas/farmacología , beta Caroteno/administración & dosificación , beta Caroteno/efectos adversos , beta Caroteno/farmacología
15.
Yakugaku Zasshi ; 141(10): 1161-1171, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-34602513

RESUMEN

Japan is currently a super-aging society, and lifestyle-related diseases that increase in incidence with age and the related rise in national medical expenses are major social problems. Preventive medicine and self-medication are becoming more important. Recently, various in vitro and in vivo studies have shown that food-derived natural compounds may contribute to the prevention and treatment of obesity-related diseases, such as diabetes mellitus. This report reviews our previous studies on the usefulness of the citrus flavonoid naringenin for obesity-related diseases. We showed that naringenin exerts an anti-diabetic effect by regulating inflammation pathways involving adipocytes and adipose tissue, and also showed an interaction between naringenin and anti-diabetic drugs. Because natural compounds are generally inexpensive and safe, they have the advantage of being easily applied to clinical applications. However, more detailed studies, such as clinical trials in humans, are required. Further research and scientific evidence will be required for the proper use of food factors in disease prevention and treatment.


Asunto(s)
Citrus , Flavanonas/administración & dosificación , Flavanonas/farmacología , Flavonoides/administración & dosificación , Flavonoides/farmacología , Obesidad/prevención & control , Obesidad/terapia , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Anciano , Animales , Diabetes Mellitus/etiología , Diabetes Mellitus/prevención & control , Diabetes Mellitus/terapia , Femenino , Interacciones Alimento-Droga , Humanos , Hipoglucemiantes/farmacología , Inflamación , Japón/epidemiología , Estilo de Vida , Masculino , Ratones , Persona de Mediana Edad , Obesidad/epidemiología , Obesidad/etiología , Problemas Sociales
16.
Oxid Med Cell Longev ; 2021: 6116890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512868

RESUMEN

Baicalein has been shown to have chondroprotective potential in vitro. However, its effect on disease modification in osteoarthritis (OA) is largely unknown. The present study is aimed at determining whether baicalein could slow the progression of OA and inhibit OA-related inflammation in a rat model of destabilization of the medial meniscus (DMM) and the underlying mechanisms. The rats subjected to DMM surgery were treated with baicalein (0.8, 1.6, and 3.2 µg/L, 50 µL, once a week) by intra-articular injection for 6 weeks. Dexamethasone (0.4 mg/mL, 50 µL, once a week) was used as a positive control. Histologic grading of cartilage degeneration was performed using the Osteoarthritis Research Society International (OARSI) recommended grading system (on a scale of 0-6). The expression levels of molecules associated with cartilage homeostasis and inflammatory cytokines were analyzed; moreover, the NLRP3 inflammasome activation and cartilage oxidative stress-associated molecules were determined. Baicalein treatment reduced the OARSI score and slowed OA disease progression in a dose-dependent manner within a certain range. Compared with DMM rats, intra-articular injection of baicalein led to (1) reduced levels of inflammatory mediates such as IL-1ß and TNF-α, (2) reduced immunochemical staining of MMP-13 and ADAMTS-5, (3) suppressed immunochemical staining loss of type II collagen, (4) reduced expression of cartilage degradation markers including CTX-II and COMP in urine, and (5) inhibited NLRP3 inflammasome activation rather than regulated expression of SOD, GSH, and MDA. In contrast to the administration of baicalein, dexamethasone injection showed similar effects to slow OA progression, while dexamethasone inhibited NLRP3 inflammasome partly through decreasing levels of SOD, GSH, and MDA. This study indicated that baicalein may have the potential for OA prevention and exerts anti-inflammatory effects partly via suppressing NLRP3 inflammasome activation without affecting oxidative stress-associated molecules, and inhibition of cartilage catabolism enzymes in an OA rat model.


Asunto(s)
Flavanonas/administración & dosificación , Inflamasomas/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraarticulares , Masculino , Antagonistas de Prostaglandina/administración & dosificación , Ratas , Transducción de Señal
17.
Pharm Biol ; 59(1): 880-883, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34214011

RESUMEN

CONTEXT: Baicalein and simvastatin possess similar pharmacological activities and indications. The risk of their co-administration was unclear. OBJECTIVE: The interaction between baicalein and simvastatin was investigated to provide reference and guidance for the clinical application of the combination of these two drugs. MATERIALS AND METHODS: The pharmacokinetics of simvastatin was investigated in Sprague-Dawley rats (n = 6). The rats were pre-treated with 20 mg/kg baicalein for 10 days and then administrated with 40 mg/kg simvastatin. The single administration of simvastatin was set as the control group. The rat liver microsomes were employed to assess the metabolic stability and the effect of baicalein on the activity of CYP3A4. RESULTS: Baicalein significantly increased the AUC(0-t) (2018.58 ± 483.11 vs. 653.05 ± 160.10 µg/L × h) and Cmax (173.69 ± 35.49 vs. 85.63 ± 13.28 µg/L) of simvastatin. The t1/2 of simvastatin was prolonged by baicalein in vivo and in vitro. The metabolic stability of simvastatin was also improved by the co-administration of baicalein. Baicalein showed an inhibitory effect on the activity of CYP3A4 with the IC50 value of 12.03 µM, which is responsible for the metabolism of simvastatin. DISCUSSION AND CONCLUSION: The co-administration of baicalein and simvastatin may induce drug-drug interaction through inhibiting CYP3A4. The dose of baicalein and simvastatin should be adjusted when they are co-administrated.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/efectos de los fármacos , Flavanonas/farmacología , Simvastatina/farmacocinética , Animales , Área Bajo la Curva , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/administración & dosificación , Interacciones Farmacológicas , Flavanonas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Concentración 50 Inhibidora , Masculino , Microsomas Hepáticos/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Drug Des Devel Ther ; 15: 3131-3150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295152

RESUMEN

INTRODUCTION: Kidney tubular epithelial injury is one of the key factors in the progression of diabetic nephropathy (DN). Wogonin is a kind of flavonoid, which has many pharmacological effects, such as anti-inflammation, anti-oxidation and anti-fibrosis. However, the effect of wogonin in renal tubular epithelial cells during DN is still unknown. MATERIALS AND METHODS: STZ-induced diabetic mice were given doses of wogonin (10, 20, and 40 mg/kg) by intragastric administration for 16 weeks. The metabolic indexes from blood and urine and pathological damage of renal tubules in mice were evaluated. Human tubular epithelial cells (HK-2) were cultured in high glucose (HG) condition containing wogonin (2µM, 4µM, 8µM) for 24 h. Tubular epithelial cell inflammation and autophagic dysfunction both in vivo and in vitro were assessed by Western blot, qRT-PCR, IHC, and IF analyses. RESULTS: The treatment of wogonin attenuated urinary albumin and histopathological damage in tubulointerstitium of diabetic mice. We also found that wogonin down-regulated the expression of pro-inflammatory cytokines and autophagic dysfunction in vivo and in vitro. Molecular docking and Cellular Thermal Shift Assay (CETSA) results revealed that mechanistically phosphoinositide 3-kinase (PI3K) was the target of wogonin. We then found that inhibiting PI3K eliminated the protective effect of wogonin. Wogonin regulated autophagy and inflammation via targeting PI3K, the important connection point of PI3K/Akt/NF-κB signaling pathway. CONCLUSION: Our study is the first to demonstrate the novel role of wogonin in mitigating tubulointerstitial fibrosis and renal tubular cell injury via regulating PI3K/Akt/NF-κB signaling pathway-mediated autophagy and inflammation. Wogonin might be a latent remedial drug against tubular epithelial injury in DN by targeting PI3K.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Flavanonas/farmacología , Inflamación/tratamiento farmacológico , Animales , Autofagia/efectos de los fármacos , Línea Celular , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/fisiopatología , Relación Dosis-Respuesta a Droga , Fibrosis/tratamiento farmacológico , Flavanonas/administración & dosificación , Humanos , Inflamación/patología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Estreptozocina
19.
Naunyn Schmiedebergs Arch Pharmacol ; 394(9): 1949-1961, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34125254

RESUMEN

Breast cancer is the most common malignancy in women worldwide. Strategies for cancer chemotherapy commonly require the use of combination therapy for better outcomes of results. The present work is aimed to evaluate the potential of naringenin and metformin concomitant addition with doxorubicin chemotherapy against experimental breast carcinoma. The antitumor potential of drugs under the study was evaluated against methylnitrosourea (MNU)-induced breast cancer in rats and 4T1 cells-induced orthotopic breast cancer mouse model. Parameters like tumor growth, body weight, survival rate, blood glucose, hematology, and histology were determined. There was a marked reduction in tumor weight and an observed decrease in tumor multiplicity by naringenin and metformin concomitant addition with doxorubicin against MNU-induced breast carcinoma. Likewise, naringenin and metformin with doxorubicin showed a significant reduction of tumor volume and tumor weight (p < 0.01) in 4T1-induced orthotopic mouse model as compared to the same dose of doxorubicin alone, suggesting combination treatment enhanced antitumor activity in vivo. Furthermore, histology of tumor biopsies presented the improved antitumor activity of doxorubicin via increasing tumor necrosis. Hematological parameters, body weight, and survival data presented remarkable safety of combination treatment without compromising efficacy using 50% lower dose of doxorubicin as compared to the large dose of doxorubicin alone. These results demonstrate that naringenin and metformin enhanced the antitumor effect of doxorubicin in animal models of breast carcinoma, and therefore can be useful as an adjunct treatment with doxorubicin to increase its effectiveness at the lower dose level for the treatment of cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Flavanonas/farmacología , Metformina/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Femenino , Flavanonas/administración & dosificación , Metformina/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Sprague-Dawley , Carga Tumoral
20.
Clin Transl Sci ; 14(5): 2017-2024, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156161

RESUMEN

Baicalein is a biologically important flavonoid in extracted from the Scutellaria baicalensis Georgi, which can effectively inhibit the influenza virus. This study aimed to analyze the safety and pharmacokinetic (PK) characteristics of baicalein tablets in healthy Chinese subjects and provide more information for phase II clinical trials. In this multiple-ascending-dose placebo-controlled trial, 36 healthy subjects were randomized to receive 200, 400, and 600 mg of baicalein tablet or placebo once daily on day 1 and day 10, 3 times daily on days 4-9. All groups were intended to produce safety and tolerability outcomes (lowest dose first). Blood and urine samples were collected from subjects in the 600 mg group for baicalein PK analysis. Our study had shown that Baicalein tablet was generally safe and well-tolerated. All adverse events were mild and resolved without any intervention except one case of fever reported in the 600 mg group, which was considered as moderate but not related with baicalein as judged by the investigator. Oral baicalein tablets were rapidly absorbed with peak plasma levels being reached within 2 h after multiple administration. The highest urinary excretion of baicalein and its metabolites peaked in 2 h, followed by 12 h, with a double peak trend.


Asunto(s)
Flavanonas/efectos adversos , Administración Oral , Adulto , Área Bajo la Curva , China , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Flavanonas/administración & dosificación , Flavanonas/farmacocinética , Semivida , Voluntarios Sanos , Humanos , Masculino , Placebos/administración & dosificación , Placebos/efectos adversos , Eliminación Renal , Comprimidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...